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Abstract This study developed a framework incorporat-

ing economies of scale into the multimodal minimum cost

flow problem. To properly account for the economies of

scale observed in practice, we explicitly modelled econo-

mies of scale on quantity, distance and vehicle size in a

given multimodal freight network. The proposed multi-

modal minimum cost flow problem formulation has con-

cave equations due to economies of scale for quantity, non-

linear equations due to economies of scale for both quantity

and distance, and non-continuous equations due to the

economies of scale for vehicle size. A genetic algorithm

was applied to find acceptable route, mode, and vehicle

size choices for the multimodal minimum cost flow prob-

lem. We demonstrated how the economies of scale influ-

enced system (mode), route choices, and total cost under

various demand/service capacity scenarios. Our results will

lead into more realistic assessments of intermodal system

by explicitly considering the three types of economies of

scale.

Keywords Decision support system � Freight
management �Mode choice �Minimum cost flow problem �
Economies of scale

1 Introduction

The multimodal freight system has been recognized as an

alternative to the truck-only system [2, 7, 14, 26]. Despite

its disadvantages—such as high extra costs for relatively

short-distance collection/distribution by trucks and their

transhipments, and a less-flexible schedule—the multi-

modal freight system has great potential to significantly

reduce total logistics costs, mainly through economies of

scale gained in long-haulage with non-road transport

modes [1]. However, it is generally understood that spec-

ifying economies of scale within a cost function is quite

difficult [16]. In fact, when a logistics optimization prob-

lem is formulated in Operations Research (OR) problem,

the economies of scale, was almost always simplified rather

than fully incorporated. In addition, the main stream of

such research efforts was to find the location of hubs or

multimodal terminals [20, 22] instead of finding optimal

combinations of freight modes/routes. The former is usu-

ally known as a network design problem (NDP) while the

latter is often called as a Minimum Cost Flow Problem

(MCFP). While there have been several attempts to embed

the concept of economies of scale in NDP, it has rarely

applied for MCFP due to mainly the computational com-

plexity. It is a key challenge that this paper addresses later.

Given multiple modes are available, another challenge is to

represent multimodality in MCFPs. As the number of

transport modes increases at a given network, the solution

procedure of MCFPs generally becomes more complicated.

If more than two modes are combined in MCFPs, it is
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called as a Multimodal Minimum Cost Flow Problem

(MMCFP).

Reflecting these challenges, this study aims at formu-

lating a MMCFP incorporating economies of scale and at

solving it by using a proposed genetic algorithm (GA)

based heuristic algorithm. The reason to use GA is

explained in detail in Appendices 1 and 2. In essence,

traditional linear and non-linear programming methods are

not suitable for solving the proposed MMCFP since the

objective function consists of non-linear and even non-

continuous cost functions.

The expected outcome of this study is mode (system1)

choice, route choice, and batch strategy2 (among different

sized vehicles) for the given ODs either directly or via

hubs. These three separate outcomes (i.e. system choice,

route choice, and detailed mode size), which has not been

shown in previous studies, would show the feasibility of

selecting multiple modes with different sized vehicles

between origin and destination nodes. The three outcomes

should not be obtained in a framework of ‘step-by-step’

procedure. Instead, they should be selected simultaneously

since one outcome obviously influences the others [21, 27].

When 300 TEUs should be sent from A to B, for example,

several combinations in terms of freight modes and each

mode’s size are considered. Based on the selections of

sized vehicles/vessels, the transport cost structure of the

mode/system is determined. Once the transport cost of a

mode/system is decided, the competiveness among the

modes considered is fixed. Thus, the batch strategy (i.e.

how to group different sized in a mode/system) influences

mode/system choice and further route choice. Also, the

changes of mode/route choice make shippers modify the

batch strategy as well. Such a consideration combining

mode/system choice, route choice, and batch strategy

would obviously lead to more realistic assessments in

multimodal systems with explicit considerations of econ-

omies of scale.

The rest of this paper is organized as follows. In Sect. 2,

based on the definition of multimodal freight transport

system, some overlooked multimodal network issues are

discussed. In Sect. 3, we introduced and defined three types

of economies of scale in a freight transport market:

Economies of Scale for Quantity (ESQ), Economies of

Scale for Distance (ESD), and Economies of Scale for

Vehicle Size (ESVS).3 Based on these three types of

economies of scales, the MMCFP is formulated in Sect. 4.

The formulated problem is solved in Sect. 5. The final

outcome for a hypothetical network is presented: route/

mode choice and the batch strategy for the chosen route/

modes in terms of combination of different sized vehicles.

Finally, concluding remarks section summarized the find-

ings from this study and recommendations for future

research.

2 Proposed network representation and route/system

choice sets

We begin our discussion by defining a multimodal freight

system. The European Conference of Ministers of Trans-

port (ECMT) defined the multimodal (combined) transport

system as follows:

Combined transport is a transport in which the major

part of the European journey is carried out by rail, inland

waterways or sea and in which any initial and/or final legs

carried out by roads are as short as possible [8].

It is explicitly pointed out that trucks take the initial and

final legs (i.e., short distances) and non-road modes serve

for the main haulage (i.e., longer distance). Thus, when a

multimodal network is drawn in this study, we assume all

initial and final trips are made by trucks even though there

are some exceptions in practice.

Figure 1a, b describe the proposed multimodal network

representation with non-road drayage penalty (dinitial) and
extra transhipments (TSc(truck, rail)). The penalty is only

applicable for some complicated freight chains: we call it

‘‘2nd level multimodal systems. This concept is introduced

since a truck’s short trip should be described when the

initial mode is either rail or vessel. More specifically, the

penalty concept shown in Fig. 1b leads to more realistic

and flexible options such as truck ? rail ? ves-

sel ? rail ? truck rather than a conventional multimodal

option such as truck ? rail ? truck. Based on the pro-

posed hypothetical network representation, Fig. 2 shows an

example of arc (1, 3) with nine feasible combinations of

transport modes. Obviously, these combinations are

applicable to any other OD pairs.

Figure 1 is the visualization of the case in which dray-

age is either road or rail while Fig. 2 is the enumeration of

the proposed freight option considered in this study. It is

notable that Figs. 1 and 2 are drawn with same symbols.

Thus, the two figures would be read together for better

understanding. The freight options indicated as r in Fig. 2

show the feasible combinations; r = 1(the truck-only sys-

tem); r = 2 and 6 (conventional rail based- and vessel

based multimodal systems, respectively). The others

(r = 3, 4, 5, 7, 8, and 9), so-called ‘‘2nd level multimodal

systems’’, have at least one rail-drayage at either initial or

1 The sequence of freight transport modes (i.e., multimodal system).
2 The batch strategy is, when several sized vehicles of a transport

mode are available, a decision on the sequence of them. (e.g. For

shipping 200 TEU, if there are 60, 75, 140 TEU trains are available, a

feasible batch strategy is that 140 TEU train is used first and then 60

TEU train is used).
3 It is obvious ESVS influences the batch strategy, which is a main

issue of this paper.
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final leg. The 2nd level multimodal systems (r = 3, 4, 5, 7,

8, and 9) pass the same consecutive nodes (1–5–6–3) to the

conventional multimodal systems (r = 2 and 6). It is noted

that a penalty is applied for all the 2nd level multimodal

systems due to the extra truck drayage described in Fig. 1b.

This is because any initial and/or final legs are carried out

by roads according to the definition of multimodal trans-

port. To sum up, the proposed multimodal network repre-

sentation enable to examine more complicated freight

modal combination.

3 Previous and proposed unit cost functions

incorporating economies of scale

In many MMCFPs, the unit cost function is assumed as a

linear function that is proportional to quantity (e.g. TEU),

distance (e.g. km), or the composite form (e.g. TEU km)

for analytical simplicity. A realistic way to specify these

three types of economies of scales in a MMCFP would be

to develop an enhanced unit cost function that is likely to

be a non-linear (even non-continuous) function of quantity,

distance, and vehicle size, and to incorporate it into the

objective function. Since the total cost in the objective

function is determined by multiplying the unit cost

function by the assigned quantities (a decision variable in

many cases), the unit cost function plays a vital role in

MMCFPs.

3.1 Previous unit cost function incorporating

economies of scale in OR problem

Since there is very limited number of MCFP incorporating

economies of scale, we expanded our scope to Network

Design Problem (NDP) and other passenger related oper-

ations research (OR) problems in reviewing cost functions

in previous studies. When considering ESQ (Economies of

Scale in terms of Quantity) in previous studies, the unit

cost in the objective function has been simplified to be as

• constant unit costs that are homogeneously applied to

every link (arc) and are consequently linearly associ-

ated with the quantity assigned to it [24]

• piecewise linear cost functions in which the unit cost is

stepped down when the quantity shipped is over a

certain assumed quantity criteria (Chang [3], or

• non-linear discount functions that are dependent only

on quantity [10, 20, 22].

A typical objective function for a MMCFP is to mini-

mize the total cost, TCij, as follows:
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Fig. 1 Multimodal network representation
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Minimize TCij ¼
X

ði;jÞ2A
CijXij ð1Þ

where A is a set of arcs between nodes i and j; Cij is a unit

cost for arc (i,j) (€/TEU4); Xij is a decision variable for arc

(i,j) (TEU).

Unit cost (Cij) generally plays a key role in this kind of

problems. Skorin-Kapov et al. [24], for example, developed

a model with a fixed constant discount factor between hubs

to attempt to describe ESQ in the hub location problem as

follows:

Minimize TCk
lm ¼

X

ði;jÞ2A

X

ðl;mÞ2H

X

k2K
alm � Ck � Xk

ij � dklm

ð2Þ

Fig. 2 Description of feasible intermodal choice sets

4 TEU is Twenty-foot Equivalent Unit; containers or swap bodies are

used as common loading unit in multimodal/multimodal freight

operations due to the simplicity of transhipment.
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where TCk
lm is the total cost between hubs (l,m) 2 H, for

mode k (€); alm is a discount factor between hubs (l,m) 2 H;

Ck is the constant unit cost of flows between hubs (l,m) 2 H

(€/TEU km); Xk
ij is the quantity shipped between (i, j) 2 A

(TEU); dklm is the distance between hubs (l,m) 2 H (km)

Ck is not a function of quantity or distance but a constant

depending on mode (k). If this constant were estimated

with consideration of economies of scale, this model would

have taken into account only ESQ at most that indirectly

affect inter-hub flows. ESQ is not gained constantly

between hubs. ESQ is gain because flows are concentrated

on between hubs, and accordingly the marginal cost to ship

a unit is reduced due to the increase of quantity. Also, the

relationship between the marginal cost and the quantity is

non-linear in most logistics cases. Thus, strictly speaking, it

is incorrect to assume a fixed constant cost function mul-

tiplying a discount factor between hubs (alm in Eq. 2)

regardless quantity, distance, and vehicle size. O’Kelly and

Bryan [20] developed a network design problem consid-

ering ESQ for passenger transports. They also assumed that

economies of scale were gained in inter-hub links only.

Racunica and Wynter [22] overcame this assumption by

allowing the amount of economies of scale on inter-hub

links to be relatively larger than other local links (i.e.,

drayage or pre-/post-haulage). The simplified cost formu-

lation adopted by the above studies is:

TCk
lm ¼

X

ði;jÞ2A

X

ðl;mÞ2H
Ck
lmðXk

ij; almÞ � Xk
ij � dklm

� �
ð3Þ

where Ck
lmðXk

ij; a
k
lmÞ is the unit cost function (€/TEU km or

€/ton km) of k mode via hubs l and m where cost is

dependent on flows Xk
ij.

The core of this approach was to develop the discount

function ðCk
lmðXk

ij; a
k
lmÞÞ which depends on quantity and the

characteristics of the route between hubs.

3.2 Proposed unit cost function incorporating

economies of scale in OR problem

Although one can develop a demand-dependent cost

function (i.e., Ck
lmðXk

ij; a
k
lmÞ), it is still independent of two

important factors contributing unit cost reductions: dis-

tance and vehicle size. As discussed in Jara-Dı́az et al. [13],

both distance and quantity non-linearly affect the marginal

cost. Therefore, it would be better to develop a unit cost

function incorporating the dependencies associated with

ESQ, ESD, and ESVS. Specifically, some freight modes

might be quantity-sensitive while others might be distance-

sensitive (e.g., trucks) or vehicle-size sensitive (e.g.,

waterborne transport). Since a multimodal freight system

consists of more than two modes, the cost function might

be inappropriate under ESQ only (i.e., ignoring ESD and

ESVS).

Reflecting the above-mentioned issues, the objective

function with the proposed unit cost function in a general

form is:

TCk
ij ¼

X

ði;jÞ2A

X

k2K

X

v2V
Ck
ijðXk

ij; d
k
ij; S

kvÞ � Xk
ij � dklj

� �
ð4Þ

where Ck
ijðXk

ij; d
k
ij; S

kvÞ is the proposed minimum unit cost

which is a function of quantity (Xij
k), distance (dij

k), and

vehicle size (Skv) for v type of vehicle (|v| = the number of

vehicle type) for each mode (k).

Generally, there would be several unit costs depending

on the types of vehicles being used. Among them, the

minimum unit cost of k mode can be chosen as the mini-

mum value. The minimum unit cost, Ck
ijðXk

ij; d
k
ij; S

kvÞ, will be
shown in the case study (Table 1) based on previous

studies where 3 types of vehicles are used for each mode

[4, 11, 12]. In addition, if the demand shipped is greater

than the capacity of the largest vehicle, multiple vehicles

need to be used. In other words, different unit cost needs to

be used depending on batch strategy, which is considered

here in order to specify ESVS. A simple algorithm for

finding the minimum unit cost through the batch strategy is

as follows:

Step 1: For each mode, set up initial given distances (dij
k)

and v types of vehicle.

Step 2: Generate choice sets based on Skv for each k. The

number of choice sets is 2|v| - 1. For example, if there

are 3 types of vehicle (i.e., |v| = 3) indicating a, b, and

c (a is the largest and accordingly the most efficient if it

is fully loaded), the number of choice sets (i.e., batch

strategy) is 2|3| - 1=7; (a?b?c), (a?b), (a?c),

(b?c), (a only), (b only), and (c only).

Step 3: For each vehicle size and mode, estimate

Ck
ijðXk

ij; d
k
ij; S

kvÞ as Xij
k increases.

Step 4: For each mode and each generated choice set,

calculate the number of vehicles used and the number of

remaining TEUs for one smaller level vehicle.

Step 5: For each mode, estimate UkðX; d;CnÞ, where

UkðX; d;CnÞ is the unit cost function of nth combination.

Step 6: Find the minimum unit cost and the optimal

batch for given quantity (X) and distance (d).

Step 7: Increase the fixed distance up to a certain level

and return to Step 3.

Figure 3 shows an example of the unit cost competition

of three different freight systems based on Table 1. When

Fig. 3 is drawn, some details are assumed as follows:

• There are three different sized vehicles for each mode

(i.e. seven choice sets (i.e., batch strategy))
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• The vehicle types used in the test were 1 TEU, 2 TEU,

and 2.5 TEU trucks; 60 TEU, 75 TEU, and 144 TEU

trains; and 200 TEU, 500 TEU, and 800 TEU container

ships.

• The distance travelled is 1,000 km for a long-haulage

and 50 km for a drayage (Note, this assumption will be

released in the case study).

Among several unit costs depending on batch strategies

that every freight system has, only the minimum unit costs

for the three systems are shown in Fig. 3. Curves are

generally broken when batch strategy is changed.5 The

minimum unit cost is sharply dropped when batch is

changed. In a vessel based multimodal system, it makes

sense that the minimum unit cost is found when a 200 TEU

vessel is used until 200 TEU. After 200 TEU, there would

be competition between two 200 TEU vessels and one 500

TEU vessel. Either way, the unit cost jumps up. Comparing

with other systems, it shows cost competitiveness after

about 110 TEUs regardless of the batch strategy (i.e., the

minimum cost of the vessel-based multimodal system is the

minimum compared to the other systems). For rail-based

multimodal system, the batch strategy changes the mini-

mum costs seven times between the segments, indicated as

A, B, C, D, E, F, and G in Fig. 3. In segments A, B, and C,

single operation of a 60 TEU train, of a 75 TEU train, and

of a 144 TEU train were the minimum, respectively. It is

interesting to see that single operation of the 144 TEU train

was more competitive than any combination of 60 and 75

TEU trains (somewhere in segment C) until reaching 144

TEU. In segment D (between 144 TEU and 150 TEU), two

75 TEU train trips showed the minimum unit cost. The

Table 1 Unit cost function by mode and size of vehicles: CkðX; dk; SkvÞ

k SV Unit cost function: CkðX; dk; SkvÞ

k = 1 Basic formulation [11, 12] Cost (€/vehicle-km)a = a� ðd1Þb

where a = 5.46, b = -0.278

C1ðX; d1; S11Þ = c1� (5:46
2

� ðd1Þ0:278) (€/TEU km)

C1ðX ; d1; S12Þ = c2 �(5:46� ðd1Þ0:278) (€/2TEU km)

C1ðX ; d1; S13Þ = c3�(5:46
2

� 2:5� ðd1Þ0:278) (€/2.5TEU km)

where c1, c2, and c3 are weight factors

assumed as 1.0, 1.1 and 1.2, respectively

v = 1 S11 = 1 TEU C1ðX; d1; S11Þ = 1.2� a
2
� ðd�ijÞ

b
(€/TEU km)

v = 2 S12 = 2 TEU C1ðX; d1; S12Þ = a
2
� ðd�ijÞ

b
(€/TEU km)

v = 3 S13 = 2.5 TEU C1ðX; d1; S13Þ = 0.9�a
2
� ðd�ijÞ

b
(€/TEU km)

k = 2 Basic formulation [11, 12] Cost (€/km ton) = a� ðWv � d2Þb

where,

a = 0.58, b = 0.74

W is the total weight of a train;

Wv = W0
v(locomotive weight) ? W1

v(flatcars weight) ?

Xij*14.3(loads weight) for v type of train.

CkðX; dk; SkvÞ = [0:58� ðWv
0 þWv

1 þ X � 14:3Þ � d2Þ0:74]/X (€/TEU km)

v = 1 S21 = 60TEU; 1 locomotive with 20 railcars C2ðX; d2; S21Þ = [0.58 9 {(89 ? 20 9 24 ? X 9 14.3) 9 d2}0.74]/X

v = 2 S22 = 75TEU; 1 locomotive with 25 railcars C2ðX ; d2; S22Þ = [0.58 9 {(89 ? 25 9 24 ? X 9 14.3) 9 d2}0.74]/X

v = 3 S23 = 144 TEU; 2 locomotives with 48 rail cars C2ðX; d2; S23Þ = [0.58 9 {(89� 2 ? 48 9 24 ? Xi 9 14.3) 9 d2}0.74]/X

k = 3 Basic formulation [5] Cost (€/TEU km) = a constant for ship size

v = 1 S31 = 200 TEU vessel C3ðX; d3; S31Þ = 0.08 (US $/TEU mile)

& 0.8b 9 0.08 9 (1/1.609) = 0.04 (€/TEU km)

v = 2 S32 = 500 TEU vessel C3ðX; d3; S32Þ = 0.05 (US $/TEU mile)

& 0.8 9 0.05 9 (1/1.609) = 0.025 (€/TEU km)

v = 3 S33 = 800 TEU vessel C3ðX; d3; S33Þ = 0.034 (US $/TEU mile)

& 0.8 9 0.04 9 (1/1.609) = 0.02 (€/TEU km)

a Assumed that a vehicle is capable of carrying 2 TEUs: either two 20-foot containers or one 40-foot container

1 USD = 0.74 € in May 2009

5 The cost function of truck-only system looks a wave. However, the

actually shape is also broken like others when truck-batch is changed.
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combination of a 144 TEU train and a 60 TEU train was

found optimal in segment E (i.e., up to 204 TEUs of

quantity). In segment F, the combination of a 144 TEU

train and a 75 TEU train was optimal (i.e., up to 219 TEUs

of quantity). From 219 TEUs of quantity, two 144 TEU

trains showed the minimum unit cost. The non-continuous

fluctuations of such graphs6 give the insight that many

local minima in MMCFP are found when several batch

strategies are considered. The total number of batch strat-

egies is dependent on |vk| and |k| where vk is the number of

vehicle size for k mode and k is the number of transport

mode (i.e. |vtruck-only|=3, |vrail-based multimodal|=3, |vvessel-

based multimodal|=3, and |k|=3). Thus, as such variables

increase, the local minima dramatically increase.

4 Multimodal minimum cost flow problem and the GA-

based heuristic algorithm

4.1 Formulation of a multimodal minimum cost flow

problem incorporating economies of scale

Consider a network G = (N, A), where N is a set of nodes

and A is a set of arcs. There are four types of N: origin,

destination, hubs at the origin area, and hubs at the desti-

nation area, denoted as O, D, HO, and HD, respectively. The

arcs are defined as aij
k , where i is the origin node, i 2 O, j is

the destination node, j 2 D, kn is a nth freight mode, and

kn2 K. Feasible routes are pre-defined as consecutive

chains of individual arcs and denoted as r and specified in

Fig. 2, where r indicates the different combinations of

modes and accordingly routes.

An objective function is as follows:

Z ¼ Min
X

ði;jÞ2A

X

r2R
Ur

ijX
r
ij ð5Þ

where Xr
ij is a container flow between i and j for r (TEU):

Decision variable

Ur
ij is function of minimum unit cost between i and j for

r (€/TEU)
Ur

ij is a function ruled by r which is shown in Fig. 2.

Depending on which r is assigned, the function value can

be estimated. Thus, Eq. 5 is non-linear and even non-

continuous. Generally, Ur
ij is a function of all drayage

processes by all k, long-haulage by all k, necessary tran-

shipments, and penalties for rail drayage. Specifically,

Ur
ij ¼ dinitial þ TScðtruck; k1Þ þ Ck1

ihoðX
k1
iHo; d

k1
iHo; S

kvÞ � dk1iHo

þ TScðk1; k2Þ þ Ck2
hohd

X

ði;jÞ2A
Xk2
ij ; d

k2
HoHd; S

kv

0
@

1
A

� dk2HoHd þ TScðk2; k3Þ þ Ck3
hdj Xk3

Hdj; d
k3
Hdj; S

kv
� �

� dk3Hdj þ TScðk3; truckÞ þ dfinal

ð6Þ

where kn 2 K, k1, k2, and k3 are the first, second, and third

modes assigned, respectively; dinitial is a penalty for rail

drayage; a constant penalty if k1 is rail (i.e., when r = 4, 5,

8, and 9), 0 otherwise (€/TEU); dfinal is a penalty of rail

drayage, a constant penalty if k3 is rail (i.e., when r = 3, 5,

7, and 9), 0 otherwise (€/TEU); TSc(k1, k2) is the trans-

shipment cost between k1 and k2 (€/TEU) C
k
ijðXk

ij; d
k
ij; S

kvÞ is

Fig. 3 Comparison of

minimum unit cost as quantity

increases

6 Actually, the minimum cost of truck-only system is also non-

continuous breaking at 1TEU, 2TEU, and 2.5 TEU. However, it was

not expressed well in the graph.

Inf Technol Manag (2016) 17:81–94 87

123



www.manaraa.com

the unit cost function embedding ESQ, ESD, and ESVS

between i and j (€/TEU–km).7

There are four notable characteristics of Ur
ij. First, the

unit of Ck
ijðXk

ij; d
k
ij; S

kvÞ is €/TEU km in order to include the

effect of ESD in a given network. ESD may not play a

significant role in MMCFP since the distance is fixed in a

given network. However, it is still worthwhile to include

ESD because such cost function enable to consider the

subtle trade-off between ESD gained long-distance truck-

ing and diseconomies of scale for short distance of non-

road modes such as rail and waterborne vessels. Secondly,

the unit cost is not a fixed constant in this case but a

function. The function values with the same demand (Xij
k)

and distance (dij
k) vary depending on how the different

vehicle sizes (Skv) are batched. Thirdly, transhipment costs

between truck and rail, between rail and rail, and between

truck and vessels are distinguished (EC [7]. Thus, TSc is a

function of modes involved. Finally, the demand in unit

cost function for long-haulage, indicated as
P

ði;jÞ2A
Xk2
ij

inCk2
hohd

P
ði;jÞ2A

Xk2
ij ; d

k2
HoHd; S

kv

 !
, is not for a single OD pair

but the summation of all Xk2
ij . This allows the clear

description of ESQ in long-haulage by non-road modes.

There are four constraints as follows:

Constraint 1 Flow-conservation constraints (i.e., equal-

ity constraints)
X

r

xrij ¼ Dij; for all(i; jÞ 2 A

Constraint 2 Mode availability constraints
X

rk

X

ði;jÞ2A
xrkij � uk; rk � r; k 2 K

Constraint 3 Hub capacity constraints
X

rk

X

ði;jÞ2A
xrkij �Hubk; rk � r; k 2 K

Constraint 4 Non-negativity constraints (lower bound)

xrij � 0 for all r and ði; jÞ 2 A

where Dij is a given demand between i and j (TEU); rk is a

k mode-related multimodal system (e.g., if k=1(truck),

rk = 1; if k=2(rail) rk = 2, 3, 4, and 5; if k=3(vessel),

rk = 6, 7, 8, and 9); uk is k mode availability (TEU/week);

Hubk is the capacity of hubs for transhipments for mode

k (TEU/week) (e.g., if k=2, Hubk is rail multimodal ter-

minal capacity; if k=3, Hubk is port capacity)

In Constraint 2, it is assumed that the rail-based multi-

modal system (r = 2) and the 2nd level rail-based multi-

modal systems (r = 3, 4, and 5) use the same freight train

service and share the same limited capacity (i.e., train

slots). The same assumption is similarly applied to four

short sea shipping options (i.e., r = 6, 7, 8, and 9).

4.2 GA-based heuristic algorithm for solving

a MMCFP

Genetic Algorithm (GA) is a powerful optimization method

of finding a near-optimal solution, especially for non-linear

and non-continuous functions such as the one proposed in

this study. The rationale for adopting the GA for the pro-

posed problem is that traditional linear and non-linear

methods are impractical to solve the proposed problem.

Specifically, due to the dependence of Ur
ij on Xij

k , shown in

Eq. 6 the number of feasible system/route choices for each

O–D set is not simply Xij
r 9 r. The numerous combinations

of route options and batch strategies in the proposed model

make it more complicated than a general MCFP. The com-

plexity of the proposed problem and the reason to use GA are

demonstrated with a simple example in Appendix 1.

Although the Genetic Algorithm (GA) was not a perfect

method guaranteeing the global optimal solution, as shown

in Appendix 1, it is certainly a feasible method to find at

least a near-optimal solution within reasonable computa-

tion time. A careful consideration should be given in

applying GA is how to handle constraints in OR problem

[6, 17, 19]; Rees and Koehler [23]; Sikora and Piramuthu

[25]. This study attempts to handle constraints by modi-

fying the initial population [18] and by developing penalty

functions [17]. The outcome of the developed GA-based

heuristic approach is a near-optimal solution for route,

mode, and vehicle size choices including batch strategy.

The basic idea and mechanism of the GA can be found in

Holland [9]. The settings we used in this study were

• Real encoding rather than Binary encoding

• Stochastic universal sampling

• Modified simple crossover

• Dynamic mutation

• Elitism

The procedure of the algorithm highlighting initial

population generation ensuring the equality constraint is

specified in Appendix 2.

5 Application with numerical example

In this section, GA is applied for an example multimodal

network in Europe. GA has found a near-optimal solution7 The unit cost function is fully estimated in Table 1 in Sect. 5.2.
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in terms of system choice, route assignment, and batch

strategy for given demand–capacity sets.

5.1 Study area network and OD pairs

A simplified hypothetical multimodal network is designed

for testing the GA-based MMCFP. The case study area is a

corridor between Western Europe and Eastern Europe with

multiple modes including truck, rail and vessel. Figure 4

presents distances between six nodes and multi-modal

links. Nodes 1, 2, 3, 4, 5, and 6 indicate Amsterdam,

Brussels, Warsaw, Vilnius, Rotterdam, and Gdansk,

respectively. The distances are estimated by using the

shortest path finder of Geographic Information System

(GIS). Using the node notation defined in the previous

section, O = [1, 2], D = [3, 4], HO = [5], HD = [6].

The demands (container flows) in the OD sets were

estimated based on the European Statistics Bureau (Euro-

stat 2008). The current container flows for (1 ? 3),

(1 ? 4), (2 ? 3), and (2 ? 4) are 315, 27, 217, and 13

TEUs, respectively. The service capacity of truck, rail, and

vessel are 400, 150, and 200 TEUs, respectively. The

condition for navigating along the Baltic route and at the

port of Rotterdam was used to reflect the capacity of ves-

sels in service. However, since the demand and service

capacity could be uncertain to some extent, we examined

three more cases: current demand with unlimited capacity

(Scenario 2), double demand with doubled service capacity

(Scenario 3), and double demand with unlimited capacity

(Scenario 4).

5.2 Cost functions incorporating economies of scale

(Ck
ijðXk

ij; d
k
ij; S

kvÞ)

It is a challenging task to develop the cost functions for-

mulated in Eq. 6. The original equations for trucks and

trains were obtained from [11, 12] while those for vessels

were taken from [5]. Ck
ijðXk

ij; d
k
ij; S

kvÞ for each mode (k) is

estimated by modifying these three original cost functions

as presented in Table 1. Note that the cost functions in

Table 1 are also used to plot Fig. 3.

5.3 Results

Table 2 shows the system/route choice and batch strategy

that minimized the total logistics cost. The first column in

Table 2 is 4 OD pairs (i,j). The r defined in Fig. 2 is in the

second column and it is graphically specified in the third

column in terms of freight transport modes between two

nodes via hubs.

For Scenario 1, the system choice in (1, 3) is truck-only

system (r = 1) and the batch strategy was the 2.5 TEU-

trucks only (C5). The main reason that all 315 TEUs are

assigned to truck-only system seems to be either the limited

service capacities for non-road modes (150 TEUs for rail

and 200 TEUs for vessel), or the relatively long detour of

the multimodal systems between Amsterdam and Warsaw

(i.e. relatively short direct trucking distance). More spe-

cifically, as shown in Fig. 4, the distance of truck-only

system (r = 1) is 1,208 km while rail-based multimodal

system (r = 2) and vessel based multimodal system

(r = 6) are 1,516 and 2,916 km respectively. Such detours

of multimodal systems crucially decrease the cost com-

petitiveness. These longer distances of multimodal freight

systems are usually compensated by ESQ gained in non-

road long-haulage. However, in this case, ESQ occurred in

(1, 3) does not seem to be sufficient to shift some quantity

of 315 TEUs from trucks (r = 1) to other multimodal

system (r = 2 to 9). As shown in (1, 4) and (2, 4), the

quantity was not enough to achieve sufficient ESQ. If 27

TEUs in (1, 4) would be shipped by other multimodal

systems. It could be successful but the ESQ was not

Fig. 4 Distance (dkij) in case

study area (unit: km)
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sufficient to overcome the detour of multimodal systems.

Therefore, it makes sense that truck was the best option for

both (1, 4) and (2, 4). The 217 TEUs in (2, 3) are split into

the three systems. In the case of r = 3, the quantity shipped

was almost the capacity of a 60-TEU train. In the case of

r = 7 and 8, the total demand of vessel in (5, 6) (i.e. 193

Table 2 Route/system choice for four scenarios: decision variables (Xij
r ) for all (i,j) and r

(i,j) r
Nodes and links

: Nodes
: Hubs

Demand
(TEU)

Batch Strategy
Truck
pre-

haulage

Train
pre-

haulage

Truck-
only

Train 
long-

haulage

Vessel 
long-

haulage

Train
post-

haulage

Truck 
post-

haulage
Scenario 1 (Base Scenario – Case study); Obj. value (Total Cost) = € 496,928

(1,3) 1 Truck
→ 315 C5

(1,4) 1 Truck
→ 27 C2

(2,3) 3 Truck
→

Rail
→

Rail
→ 59 C2 C7 C3

7 Truck
→

Vessel
→

Rail
→ 143 C3 C3 C3

8 Rail
→

Vessel
→

Truck
→ 15 C7 C3 C5

(2,4) 1 Truck
→ 13 C1

Scenario 2; Obj. value (Total Cost) = € 376,189

(1,3) 1 Truck
→ 28 C1

5 Rail
→

Rail
→

Rail
→ 287 C5 C5 C2

(1,4) 1 Truck
→ 27 C2

(2,3) 5 Rail
→

Rail
→

Rail
→ 217 C2 C5 C2

(2,4) 2 Truck
→

Rail
→

Truck
→ 13 C1 C5 C1

Scenario 3; Obj. value (Total Cost) = € 877,539

(1,3) 1 Truck
→ 630 C5

(1,4) 5 Rail
→

Rail
→

Rail
→ 54 C7 C5 C5

(2,3) 4 Rail
→

Rail
→

Truck
→ 40 C3 C5 C5

9 Rail
→

Vessel
→

Rail
→ 393 C3 C6 C5

(2,4) 5 Rail
→

Rail
→

Rail
→ 26 C3 C5 C5

Scenario 4; Obj. value (Total Cost) = € 657,184

(1,3) 9 Rail
→

Vessel
→

Rail
→ 630 C3 C2 C3

(1,4) 3
Truck
→

Rail
→

Rail
→ 54 C2 C5 C7

(2,3) 7 Truck
→

Vessel
→

Rail
→ 141 C3 C2 C3

9 Rail
→

Vessel
→

Rail
→ 278 C3 C2 C3

(2,4) 1 Truck
→ 1 C7

2 Truck
→

Rail
→

Truck
→ 11 C3 C5 C3

4 Rail
→

Rail
→

Truck
→ 14 C3 C5 C2

Truck
C1: 2.5 TEU truck(s)* 

2.0 TEU truck(s)* 1.0 TEU truck(s)
C2: 2.5 TEU truck(s)* 2.0 TEU truck(s)
C3: 2.5 TEU truck(s)* 1.0 TEU truck(s)
C4: 2.0 TEU truck(s)* 1.0 TEU truck(s)
C5: 2.5 TEU truck(s) only
C6: 2.0 TEU truck(s) only
C7: 1.0 TEU truck(s) only

Rail
C1: 144-TEU train(s)*

75-TEU train(s)* 60-TEU train(s)  
C2: 144-TEU train(s)* 75-TEU train(s)
C3: 144-TEU train(s)* 60-TEU train(s)
C4: 75-TEU train(s)* 60-TEU train(s)
C5: 144-TEU train(s) only
C6: 75-TEU train(s) only
C7: 60-TEU train(s) only

Vessel
C1: 800 TEU vessel(s)*
500 TEU vessel(s)* 200 TEU vessel(s)
C2: 800 TEU vessel(s)* 500 TEU vessel(s)
C3: 800 TEU vessel(s)* 200 TEU vessel(s)
C4: 500 TEU vessel(s)* 200 TEU vessel(s)
C5: 800 TEU vessel(s) only
C6: 500 TEU vessel(s) only
C7: 200 TEU vessel(s) only
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TEUs) is also near to the capacity of a 200-TEU vessel.

One may wonder why not 60 TEUs for r = 3 in (2, 3)

instead of 59 TEUs since it seems to be more efficient for

r = 3 due to a full-loaded 60-TEU train in (5, 6). Since it

was not possible to check the optimal solution, we tested

some suspicious candidate solutions for (2, 3). For exam-

ple, we tested

• 60 TEU (i.e. full loading of a 60-TEU train) for r = 3

and 142 TEU for r = 7 and 15 TEU for r = 8

• 60 TEU for r = 3 and 144 TEU for r = 7 and 12 TEU

for r = 8

• 60 TEU for r = 3 and 144 TEU for r = 9 and 12 TEU

for r = 6

The objective function values of those candidates was

worse than the solution we found (€ 496,928).

The OD flows in Scenario 2 are same but the service

capacity is increased to the infinite. The infinite service

capacity indicates that non-road modes can be used without

any constraints if they are more cost-effective than the

truck-only system. Technically, releasing inequality con-

straints would result in a much larger search space for

feasible solutions. This wider feasible space should lead to

better solutions under these scenarios. Overall, €120,739
cost savings (€211 savings per TEU) is achieved. For arc

(1, 3), 287 TEUs is shifted to a type of the multimodal

system (r = 5). We hypothesized that the assigned 315

TEUs to the truck-only system in Scenario 1 might be

caused by the limited service capacity of non-road modes

and the detour in the route (1, 3). Scenario 2 clearly shows

the multimodal options could be selected when service

capacity increases despite of the high detours of the mul-

timodal systems. The specific mechanism for this modal

shift can be explained by the concept of consolidation at

hubs. More specifically, 287 TEUs in (1, 3), 217 TEUs in

(2, 3), and 13 TEUs in (2, 4) are consolidated at the hub 5

and co-shipped by a couple of trains. Also, 287 TEUs in (1,

3) and 217 TEUs in (2, 3) are consolidated at hub 6 and

sent to node 3 together. These consolidations are confirmed

in the batch strategy we found. For the train long-haulage,

C5 is commonly found in (1, 3), (2, 3), and (2, 4): 144-TEU

train only. For the train post-haulage, C2 is found.

Scenario 3 shows the impact of the double demand with

the double capacity compared with Scenario 1. Overall, the

total cost (objective function value) of Scenario 3 (€
877,539) compared with that of S1 (€ 496,928) is less than

double. In other words, economies of scale are more

intensively gained in Scenario 3 than in Scenario 1 as

quantity increases. When the service capacity constraint is

released in Scenario 4, the flows in arc (1, 3) are eventually

shifted to a multimodal option. It indicates the advantage of

economies of scale overcomes the disadvantage of the

detours. The main contribution to this huge modal shift is

the consolidations at several stages (e.g. rail at node 2;

vessel and rail at hub 5; rail at hub 6).

6 Concluding remarks

The significant advance in the multimodal freight trans-

portation modelling was made by incorporate economies of

scales. To our best knowledge, no attempts have been made

to incorporate economies of scales in MCFP with realistic

cost functions. Considering multimodality (so, MMCFP)

and categorizing general economies of scale components

including ESQ, ESD, and ESVS make the problem more

complicated. Consideration of these into the economies of

scale leads to non-linear, non-continuous, and non-convex

cost functions. Given the proposed MMCFP consisted of

such complicated cost functions were not effectively

solved using traditional method such as linear and non-

linear programming, a GA-based heuristic algorithm was

applied.

The main contribution of this study was to explicitly

consider several multimodal freight transport options in

terms of quantity, vehicle size (v = 1–3), batch strategy

(C1–C7), multi-modes (k = 1–3) and their combinations

(r = 1–8). To date, no MCFPs generating such useful

information shown in Table 2 have been formulated in a

single problem. Specifically, we found system/route choice

including the sequence of the modes along the route and

the batch strategy for each mode selected. For simple

example for highlighting the contribution of this study,

• The outcome in a type of previous studies is

‘‘truck ? rail ? truck’’

• The outcome in another type of previous studies is

‘‘truck ? rail ? truck; rail is used between hubs’’

• The outcome in this study is ‘‘60 TEU truck ? the

combination of 144 TEU train and 60 TEU

train ? combination of 60 TEU train and 2.5 TEU

trucks 5 times; 144 TEU train and 60 TEU train should

be assigned between hubs’’

More specifically, it was possible to determine the

multimodal and multi-batch options between hubs as well

as any two nodes (i.e., origin and destination nodes). It is

noted that one unit modal shift in quantity in an arc could

lead to the complete change of mode/route choice since all

unit costs of the entire network and batch strategy could be

significantly changed. In other words, the final outcome is

a consequence of (1) trade-off among ESD for long-haul-

age as well as diseconomies of scale with respect to

drayage distance, (2) increased demand made possible to

use bigger sized vehicles, which is related to both ESQ and

ESVS, and (iii) the influences on the optimal batch

strategy.
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Nevertheless, there are some important challenges that

were not fully considered in this study such as travel time,

network configuration, impact of large network, and fre-

quency of train which affect multimodal cost as well as

mode/system choice [15]. Especially, since our case net-

work is not enough, the impact of larger network should be

conducted in future study.

In addition, this study is limited to clarify the individual

impact of the three types of economies of scale on mode/

route choice and batch strategy. This clarification would

lead to an estimation of the trade-off between economies of

scale obtained from long-haulage using non-road systems

and diseconomies of scale due to terminal congestion/dis-

economies of scale due to drayage distance. In future, to

fully consider those complicated impacts of travel time,

network configuration, the size of network, and frequency

of train on MMCFP as well as the trade-off, a multi-

objective optimization model would be developed.

Appendix 1: Rationale to use GA

In this Appendix, the complexity of the proposed problem

and the reason to use GA are demonstrated with a simple

example. Assume r = 9 feasible routes (based on Fig. 2)

from node 1 to node 3 via origin hub 5 and destination hub

6. Also, consider four types of cost functions: (1) simple

constant cost functions (based on Eq. 1), (2) constant hub-

discount cost functions (based on Eq. 2), (3) demand-

dependent hub discount cost functions (based on Eq. 3),

and (4) the proposed demand-dependent cost function with

multiple sized vehicle options (based on Eq. 4 or, specifi-

cally, Eq. 6). The type of problem needed to estimate the

number of cases to assign might be
P

rX13
r (a certain

quantity) to 9 slots (where 0 B r B 9, Xij
r is a non-negative

integer).

• When
P

rX13
r = 1, the four cases obviously have nine

different costs for the nine options for assignment: 9C1.

The feasible assignments are

[1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0], …[0,0,0,0,0,0,

0,1,0], [0,0,0,0,0,0,0,0,1].

• When
P

rX13
r = 2, the four cases have 45 different

costs for the nine options for assignment: 1 9

9C1 ? 1 9 9C2. The feasible assignments are

[2,0,0,0,0,0,0,0,0], [0,2,0,0,0,0,0,0,0], …[0,0,0,0,0,0,

0,2,0], [0,0,0,0,0,0,0,0,2] when one option (|r| = 1) is

exclusively chosen, or

[1,1,0,0,0,0,0,0,0], [1,0,1,0,0,0,0,0,0], …[0,0,0,0,0,

0,1,0,1], [0,0,0,0,0,0,0,1,1] when two options (|r| =

2) are chosen.

In the first (1) and second (2) cost functions, the total

cost for all the other cases (i.e.,
P

r X13
r = X, where X is a

positive integer greater than 1) can be estimated through

simple a arithmetic calculation once
P

rX13
r = 1 is sepa-

rately estimated and saved. For example, the total cost for

[1–8] can be easily estimated by multiplying 1,2,…,9 by

[1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0], …, [0,0,0,0,0,0,0,

0,1], respectively. No further complexity is required. In the

third (3) and fourth (4) cost functions, the total cost forP
rX13

r = X should be independently estimated. In general,

as one unit of demand increases, the total costs for all

r should be estimated.

• When
P

rX13
r = 3, the four cases have nine different

costs for the 9 options for assignment: 1 9 9C1 ?

2 9 9C1 ? 1 9 9C1. The feasible assignments are

[3,0,0,0,0,0,0,0,0], [0,3,0,0,0,0,0,0,0], …[0,0,0,0,0,0,

0,3,0], [0,0,0,0,0,0,0,0,3] when one option (|r| = 1) is

exclusively chosen, or

[2,1,0,0,0,0,0,0,0], [2,0,1,0,0,0,0,0,0], …[0,0,0,0,0,0,

1,0,2], [0,0,0,0,0,0,0,1,2] when two options (|r| = 2)

are chosen, or

[1,1,1,0,0,0,0,0,0], [1,1,0,1,0,0,0,0,0], …[0,0,0,0,0,

1,0,1,1], [0,0,0,0,0,0,1,1,1] when three options

(|r| = 3) are chosen.

In general, the number of the routing cases for one OD

pair is b1 9 9C1 ? b2 9 9C2
��� ? b999C9, where bi is the

sequence number in Pascal triangles (i = 1, 2,…, 9). Using

this formula, the number of cases between any two nodes is

P9

i¼1
P9
r¼1

Xr
ij

Ci�1 � 9Ci. The number of cases are crucially

dependent on
P9

r¼1

Xr
ij. For example, when

P9

r¼1

Xr
ij = 10, 102,

and 103, the number of cases for a possible route combi-

nation are 7.64, 3.811, and 2.619, respectively. In addition, if

we take the batch strategy into account, the number of

cases is increased to
P9

i¼1
P9
r¼1

Xr
ij

Ci�1 � 9Ci

0

B@

1

CA� 2N � 1ð ÞK ,

where N is the type of vehicle and K is the number of

freight modes (see the algorithm for finding the minimum

unit cost in the previous section). Furthermore, some

inflows from the other nodes to hubs (e.g., X24
r for any r)

possibly change Wk2
hohdð

P
ði;jÞ2A

Xk2
ij ; d

k2
HoHd; S

kvÞ � dk2HoHd

(Eq. 6). For example, if 1 TEU shifts from r = 3 to r = 7

for X13, it not only causes changes in the minimum unit

costs (Ur
13) of the two shifted r for r = 3 and r = 7 but also

changes in the minimum unit costs for all the other mul-

timodal options (r). Therefore, the number of different

cases in the function type (4) that are proposed in this study
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is
P9

i¼1
P9
r¼1

Xr
ij

Ci�1 � 9Ci

0
B@

1
CA� 2N � 1ð ÞK�OD, where OD is

the number of OD pairs in a given network. Compared to

function type (3), there are obviously fewer feasible

assignments than for function type (4) due to non-road

drayage. If we ignore non-road drayage, |r| is reduced from

9 to 3—that is, the number of cases related to non-road

drayage is 6 (i.e., r = 3, 4, 5, 7, 8, and 9). In addition, if the

batch strategy is not considered in cases with function type

(3), the number of cases can be defined as

P3

i¼1
P3
r¼1

Xr
ij

Ci�1 � 3Ci

0

B@

1

CA� OD, which is significantly less

than the proposed function. Unless a meta-heuristic method

such as GA is used, the proposed problem might not be

solvable within a reasonable amount of time.

Appendix 2: GA-based heuristic algorithm

Step 1: Initialize the parameters for given data such as

generation number, population size, length of chromo-

some (which is equivalent to the number of decision

variables in real-coded GA), OD demand matrix (Dij),

OD distance matrix dkij for all (i,j) pairs and all modes in

the cost function (Wk
ijðXk

ij; d
k
ij; S

kvÞ), the lower bound (i.e.,

Constraint 4), and constant penalty (p).

Step 2: Generate the initial population ( ~Xr
ij) with two

vectors: �Xr
ij and X̂r

ij

Step 2.1: �Xr
ij is a vector including N random real

numbers, where N is the number of decision variables

on arc (i,j), 0� �Xr
ij � 1. Note: N is determined by the

number of |r| and OD pairs (for example, N = 36 if

|r| = 9 as in Fig. 2 and |OD| = 4 as in Table 2).

Step 2.2: X̂r
ij is a vector including N random binary

numbers, X̂r
ij 2 [0, 1]. 1 is assigned as a component of

X̂r
ij if a random number is greater than 0.5; otherwise,

0 is assigned.

Step 2.3: The initial population ( ~Xr
ij) is a vector

placing �Xr
ij and X̂r

ij in the same raw in order.

Note: the number of raw of ~Xr
ij is 2N.

Step 2.4: Generate the matrix ~Xr
ij until it reaches the

maximum population size.

Note: the matrix size of ~Xr
ij should be 2N multiplied by

the maximum population size. It is assumed that the

number of decision variables should be even.

Step 3: Update the initial population satisfying equality

constraints (i.e., Constraint 1) for each arc (i,j) and

generate the new population (Xr
ij).

X
^r

ij is the element-wise vector multiplication for the real

number side ( �Xr
ij) and the binary number side (X̂r

ij) of the

initial population ( ~Xr
ij).

Xr
ij = (X

^r

ij � Dij /
P
r

X
^r

ij), where
P
r

X
^r

ij is the sum of X
^r

ij

for all r on (i,j) and Dij is a given demand between i and j

(TEU).

Note: a raw vector of Xr
ij is a candidate solution for (i,j)

satisfying equality constraints and the size is N.

Step 4: Calculate the objective function (i.e., Eq. 5) for

the population (Xr
ij) with g = 1 where g is generation

number;

Save the objective function value for the gth population

(Obj(g)).

Step 5: Check for inequality constraints (Constraints 3

and 4);

for each arc (i,j)

If
P
rk

P
ði;jÞ2A

xrkij � uk and
P
rk

P
ði;jÞ2A

xrkij �Hubk

Obj(g) = Obj(g)

Otherwise,

Obj(g) = Obj(g) ? Penalty (p)

Step 6: Estimate the fitness function.

Step 7: Increase the generation number (g = g ? 1) and

Run Reproduce, Crossover, Mutation, and Elitism for

Xr
ij.

Step 8: Return to Step 3 if g is less than the maximum

number of generations.

Steps 2 and 3 are not normally included in prototypes of the

GA procedure. These two steps are designed to generate the

initial population and simultaneously ensure the equality

constraint. These steps would be removed if another tech-

nique to handle equality constraints could be developed. In

addition, Step 7 is not fully described here. For the details of

Step 7, see two pioneer studies by Holland [9].

References

1. Bärthel F, Woxenius J (2004) Developing intermodal transport

for small flows over short distances. Transp Plan Technol

27:403–424

2. Bontekoning YM, Priemus H (2004) Breakthrough innovations in

intermodal freight transport. Transp Plan Technol 27:335–345

3. Chang T-S (2008) Best routes selection in international inter-

modal networks. Comput Oper Res 35:2877–2891

4. Cullinance K, Khanna M (1999) Economies of scale in large

container ships. J Transp Econ Policy 33:185–208

Inf Technol Manag (2016) 17:81–94 93

123



www.manaraa.com

5. Cullinane K, Khanna M (1999) Economies of scale in large

container ships. J Transp Econ Policy 33:185–208

6. Deb K (2000) An efficient constraint handling method for genetic

algorithms. Comput Methods Appl Mech Eng 186:311–338

7. EC (2001) White Paper—European Transport Policy for 2010:

time to decide. EC

8. ECMT (1998) Terminology on combined transport. ECMT(Euro-

pean Conference of Ministers of Transport), Paris

9. Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Ann Arbor

10. Horner MW, O’Kelly ME (2001) Embedding economies of scale

concepts for hub network design. J Transp Geogr 9:255–265

11. Janic M (2007) Modelling the full costs of an intermodal and road

freight transport network. Transp Res Part D 12:33–44

12. Janic M (2008) An assessment of the performance of the Euro-

pean long intermodal freight trains (LIFTS). Transp Res Part A

Policy Pract 42:1326–1339

13. Jara-Dı́az SR, Donoso PP, Araneda JA (1992) Estimation of

marginal transport costs: the flow aggregation function approach.

J Transp Econ Policy 26:35–48

14. Kim NS, Van Wee B (2009) Assessment of CO2 emissions for

truck-only and rail-based intermodal freight systems in Europe.

Transp Plan Technol 32:313–330

15. Kreutzberger ED (2008) Distance and time in intermodal goods

transport networks in Europe: a generic approach. Transp Res

Part A Policy Pract 42:973–993

16. McCann P (2001) A proof of the relationship between optimal

vehicle size, haulage and the structure of distance-transport cost.

Transp Res Part A 35:671–693

17. Michalewicz Z (1995) Genetic algorithms, numerical optimiza-

tion, and constraints. In: Sixth international conference on genetic

algorithms, Morgan Kauffman, San Mateo

18. Michalewicz Z, Fogel DB (2000) How to solve it: modern heu-

ristics. Springer, Berlin

19. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms

for constrained parameter optimization problems. Evol Comput

4:1–32

20. O’Kelly ME, Bryan DL (1998) Hub location with flow economies

of scale. Transp Res Part B 32:605–616

21. Piramuthu S, Shaw MJ (2009) Learning-enhanced adaptive DSS:

a Design Science perspective. Inf Technol Manag 10:41–54

22. Racunica I, Wynter L (2005) Optimal location of intermodal

freight hubs. Transp Res Part B 39:453–477

23. Rees J, Koehler G (2001) Evolution in groups: a genetic algo-

rithm approach to group decision support systems. Inf Technol

Manag 3:213–227

24. Skorin-Kapov D, Skorin-Kapov J, O’Kelly ME (1996) Tight

linear programming relaxations of uncapacitated p-hub median

problems. Eur J Oper Res 94:582–593

25. Sikora R, Piramuthu S (2005) Efficient genetic algorithm based

data mining using feature selection with Hausdorff distance. Inf

Technol Manag 6:315–331

26. USDOT (1991) The intermodal surface transportation efficiency

act of 1991. U.S. Department of Transportation, Washington

27. Wang X, Wang H, Wang H, Zhang L, Cao X (2011) Constructing

a decision support system for management of employee turnover

risk. Inf Technol Manag 12(2):187–196

94 Inf Technol Manag (2016) 17:81–94

123



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


	c.10799_2014_Article_209.pdf
	A knowledge based freight management decision support system incorporating economies of scale: multimodal minimum cost flow optimization approach
	Abstract
	Introduction
	Proposed network representation and route/system choice sets
	Previous and proposed unit cost functions incorporating economies of scale
	Previous unit cost function incorporating economies of scale in OR problem
	Proposed unit cost function incorporating economies of scale in OR problem

	Multimodal minimum cost flow problem and the GA-based heuristic algorithm
	Formulation of a multimodal minimum cost flow problem incorporating economies of scale
	GA-based heuristic algorithm for solving a MMCFP

	Application with numerical example
	Study area network and OD pairs
	Cost functions incorporating economies of scale (C_{ij}^{k} (X_{ij}^{k} ,d_{ij}^{k} ,S^{kv} ))
	Results

	Concluding remarks
	Appendix 1: Rationale to use GA
	Appendix 2: GA-based heuristic algorithm
	References





